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The power of one

ALEX HAD NO IDEA what dark little secret he was
about to uncover when he asked his brother-in-law to
help him out with his term project. As an accountancy
student at Saint Mary’s University in Halifax, Nova Sco-
tia, Alex needed some real-life commercial figures to
work on, and his brother-in-law’s hardware store seemed
the obvious place to get them.

Trawling through the year’s sales figures, Alex could
find nothing obviously strange about them. Still, he did
what he was supposed to do for his project, and per-
formed a bizarre little ritual requested by his accoun-
tancy professor, Mark Nigrini. He went through the sales
figures and made a note of how many started with the
digit 1. It came out at 93 per cent. He handed it in and
thought no more about it.

Later, when Nigrini was marking the coursework, he
took one look at that figure and realised that an embar-
rassing situation was looming. His suspicions hardened
as he looked through the rest of Alex’s analysis of his
brother-in-law’s accounts. None of the sales figures
began with the digits 2 through to 7, and there were just
4 beginning with the digit 8, and 21 with 9. After a few
more checks, Nigrini was in no doubt: Alex’s brother-in-
law was a fraudster, systematically cooking the books to
avoid the attentions of bank managers and tax inspectors.

It was a nice try. At first glance, the sales figures
showed nothing very suspicious, with none of the sud-
den leaps or dives that often attract the attentions of the
authorities. But that was just it: they were too regular.
And this is why they fell foul of that ritual he had asked
Alex to perform.

Because what Nigrini knew—and Alex’s brother-in-
law clearly didn't—was that the digits making up the
shop's sales figures should have followed a mathemati-
cal rule discovered accidentally over 100 years ago.
Known as Benford’s law, it is a rule obeyed by a stunning
variety of phenomena, from stock market prices to cen-
sus data to the heat capacities of chemicals. Even a rag-
bag of figures extracted from newspapers will obey the
law’s demands that around 30 per cent of the numbers
will start with a 1, 18 per cent with a 2, right down to just
4-6 per cent starting with a 9.

[tis a law so unexpected that at first many people sim-
ply refuse to believe it can be true. Indeed, only in the
past few years has a really solid mathematical explana-
tion of its existence emerged. But after years of being re-
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Everyday numbers obey a law so
unexpected it is hard to believe it’s true.
Armed with this knowledge, says
Robert Matthews, it’s easy to catch
those who have been faking research
results or cooking the books

garded as a mathematical curiosity, Benford’s law is now
being eyed by everyone from tax inspectors to computer
designers—all of whom think it could help them solve
some tricky problems with astonishing ease. In two
weeks’ time, the US Institute of Internal Auditors will
begin holding training courses on how to apply Ben-
ford’s law in fraud investigations, hailing it as the biggest
advance in the field for years.

The story behind the law’s discovery is every bit as
weird as the law itself. In 1881, the American astronomer
Simon Newcomb penned a note to the American Journal
of Mathematics about a strange quirk he’d noticed about
books of logarithms, then widely used by scientists per-
forming calculations. The first pages of such books
seemed to get grubby much faster than the last ones.

The obvious explanation was perplexing. For some
reason, people did more calculations involving num-
bers starting with 1 than 8 and 9. Newcomb came up
with a little formula that matched the pattern of use
pretty well: nature seems to have a penchant for
arranging numbers so that the proportion beginning
with the digit D is equal to log10 of 1 + (1/D) (see “Here,
there and everywhere”).

With no very convincing argument for why the for-
mula should work, Newcomb’s paper failed to arouse
any interest, and the Grubby Pages Effect was forgotten
for over half a century. But in 1938, a physicist with the
General Electric Company in the US, Frank Benford,
rediscovered the effect and came up with the same law
as Newcomb. But Benford went much further. Using
more than 20 000 numbers culled from everything from
listings of the drainage areas of rivers to numbers
appearing in old magazine articles, Benford showed that
they all followed the same basic law: around 30 per cent
began with the digit 1, 18 per cent with 2 and so on.
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‘Even the inhabitants of the Planet Zob, who
measure area in grondekis, must find exactly the
same distribution of digits in drainage areas as

we do using hectares’

Like Newcomb, Benford did not have
any really good explanation for the exis-
tence of the law. Even so, the sheer wealth
of evidence he provided to demonstrate
its reality and ubiquity has led to his name
being linked with the law ever since.

It was nearly a quarter of a century before
anyone came up with a plausible answer to
the central question: why on earth should
the law apply to so many different sources
of numbers? The first big step came in 1961
with some neat lateral thinking by Roger
Pinkham, a mathematician then at Rutgers
University in New Brunswick, New Jersey.
Just suppose, said Pinkham, there really is
a universal law governing the digits of
numbers that describe natural phenomena
such as the drainage areas of rivers and the

100
90
80
70
60
50
40
30
20

10

Occurrence frequency (per cent)

properties of chemicals. Then any such law

“must work regardless of what units are

used. Even the inhabitants of the Planet
Z0ob, who measure area in grondekis, must
find exactly the same distribution of digits
in drainage areas as we do, using hectares.
But how is this possible, if there are 87-331

_ hectares to the grondeki?

The answer, said Pinkham, lies in ensur-
ing that the distribution of digits is unaf-
fected by changes of units. Suppose you
know the drainage area in hectares for a
million different rivers. Translating each of
these values into grondekis will change the
individual numbers, certainly. But overall,
the distribution of numbers would still
have the same pattern as before. This is a
property known as “scale invariance”.

- Observed first digit
=== Benford's law prediction
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Pinkham showed mathematically that
Benford’s law is indeed scale-invariant.
Crucially, however, he also showed that
Benford's law is the only way to distrib-
ute digits that has this property. In other
words, any “law” of digit frequency with
pretensions of universality has no choice
but to be Benford's law.

Pinkham'’s work gave a major boost to
the credibility of the law, and prompted
others to start taking it seriously and
thinking up possible applications. But a
key question remained: just what kinds of
numbers could be expected to follow Ben-
ford’s law? Two rules of thumb quickly
emerged. For a start, the sample of num-
bers should be big enough to give the pre-
dicted proportions a chance to assert
themselves. Second, the numbers should
be free of artificial limits, and allowed to
take pretty much any value they please. It
is clearly pointless expecting, say, the
prices of 10 different types of beer to con-
form to Benford’s law. Not only is the
sample too small, but—more impor-
tantly—the prices are forced to stay within
a fixed, narrow range by market forces.

Random numbers

On the other hand, truly random numbers
won't conform to Benford's law either: the
proportions of leading digits in such num-
bers are, by definition, equal. Benford’s
Law applies to numbers occupying the
“middle ground” between the rigidly con-
strained and the utterly unfettered.
Precisely what this means remained a
mystery until just three years ago, when
mathematician Theodore Hill of Georgia
Institute of Technology in Atlanta uncov-
ered what appears to be the true origin of
Benford’s law. It comes, he realised, from
the various ways that different kinds of
measurements tend to spread themselves.
Ultimately, everything we can measure in
the Universe is the outcome of some
process or other: the random jolts of
atoms, say, or the exigencies of genetics.
Mathematicians have long known that the
spread of values for each of these follows
some basic mathematical rule. The heights
of bank managers, say, follow the bell-
shaped Gaussian curve, daily tempera-
tures rise and fall in a wave-like pattern,
while the strength and frequency of earth-
quakes are linked by a logarithmic law.
Now imagine grabbing random handfuls
of data from a hotchpotch of such distrib-

Caught out: Alex’s brother-in-law fiddled his shop figures,
but the deviation of his numbers from the distribution
predicted by Benford's law clearly showed up the fraud

New Scientist® www.newscientist.com



utions. Hill proved that as you grab ever
more of such numbers, the digits of these
numbers will conform ever closer to a sin-
gle, very specific law. This law is a kind of
ultimate distribution, the “Distribution of
Distributions”. And he showed that its
mathematical form is...Benford’s Law.
Hill’s theorem, published in 1996, seems
finally to explain the astonishing ubiquity
of Benford’'s law. For while numbers de-
scribing some phenomena are under the
control of a single distribution such as the
bell curve, many more—describing every-
thing from census data to stock market
prices—are dictated by a random mix of
all kinds of distributions. If Hill’s theorem

New Scientist® www.newscientist.com
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is correct, this means that the digits of these
data should follow Benford’s law. And, as
Benford’s own monumental study and
many others have showed, they really do.

Mark Nigrini, Alex’s former project su-
pervisor and now a professor of accoun-
tancy at the Southern Methodist Univer-
sity, Dallas, sees Hill's theorem as a crucial
breakthrough: “It . . . helps explain why
the significant-digit phenomenon appears
In S0 many contexts.”

[t has also helped Nigrini to convince
others that Benford’s law is much more
than just a bit of mathematical frivolity.
Over the past few years, Nigrini has be-
come the driving force behind a far from
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frivolous use of the law: fraud detection.

In a ground-breaking doctoral thesis
published in 1992, Nigrini showed that
many key features of accounts, from sales
figures to expenses claims, follow Ben-
ford’s law—and that deviations from the
law can be quickly detected using standard
statistical tests. Nigrini calls the fraud-bust-
ing technique “digital analysis”, and its
successes are starting to attract interest in
the corporate world and beyond.

Some of the earliest cases—including
the sharp practices of Alex’s store-keeping
brother-in-law—emerged from student
projects set up by Nigrini. But soon he was
using digital analysis to unmask much
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‘Benford’s law could reveal suspicious data in
clinical trials, while a number of university
researchers have contacted Nigrini to find out if
digital analysis could help reveal fraud in

laboratory notebooks’

bigger frauds. One recent case involved
an American leisure and travel company
with a nationwide chain of motels. Using
digital analysis, the company’s audit
director discovered something odd about
the claims being made by the supervisor
of the company’s healthcare department.
“The first two digits of the healthcare pay-
ments were checked for conformity to
Benford’s law, and this revealed a spike in
numbers begmnmg with the digits ‘65’,”
says Nigrini. “An audit showed 13 fraud-
ulent cheques for between $6500 and
$6599...related to fraudulent heart surgery
claims processed by the supervisor, with
the cheque ending up in her hands.”
Benford’s law had caught the super-
visor out, despite her best efforts to make
the claims look plausible. “She carefully
chose to make claims for employees at mo-
tels with a higher than normal number of
older employees,” says Nigrini. “The

analysis also uncovered other fraudulent
claims worth around $1 million in total.”
Not surprisingly, big businesses and cen-
tral governments are now also starting to
take Benford's law seriously. “Digital
analysis is being used by listed companies,
large private companies, professional firms

., and government agencies in the US and

Europe—and by one of the world’s biggest
audit firms,” says Nigrini.

Warning signs

The technique is also attracting interest
from those hunting for other kinds of
fraud. At the International Institute for
Drug Development in Brussels, Mark
Buyse and his colleagues believe Benford's
law could reveal suspicious data in clinical
trials, while a number of university
researchers have contacted Nigrini to find
out if digital analysis could help reveal
fraud in laboratory notebooks.

Here, there and everywhere

NATURE'S preferences for certain numbers and sequences has long fascinated
mathematicians. The so-called Golden Mean— roughly equal to 1-62 and supposedly giving
the most aesthetically pleasing dimensions for rectangles—has been found lurking in all
kinds of places, from seashells to knots, while the Fibonacci sequence—1,1,2,3,5,8and
so on, every figure being the sum of its two predecessors—crops up everywhere in nature,
from the arrangement of leaves on plants to the pattern on pineapple skins.

Benford's law appears to be another fundamental feature of the mathematical unlwrsa,
with the proportion of numbers starting with the digit D given by log10 of 1 + (1/D). In other
words, around 100 x log2 (30 per cent) of such numbers will begin with “1”; 100 x log1-5
(17-6 per cent) with “2"; down to 100 x log1-11 (4-6 per cent) with “9".

But the mathematics of Benford’s law goes further, predicting the proportion of digits in
the rest of the numbers as well. For example, the law predicts that “0" is the most likely
second digit—accounting for around 12 per cent of all second digits—while 9 is the least

likely, at 8-5 per cent.

Benford’s law thus suggests that the most common non-random numbers are those
starting with “10...", which should be almost 10 times more abundant than the least likely,

which will be those starting “99...".

As one might expect, Benford’s law predicts that the relative propurlinns of 1, 2, 3 and
so on making up later digits of numbers become progressively more even, tending towards
precisely 10 per cent for the least significant digit of every large number.

In a nice little twist, it turns out that the Fibonacci sequence, the Golden Mean and
Benford's law are all linked. The ratio of successive terms in a Fibonacci sequence tend
toward the golden mean, while the digits of all the numbers making up the Fibonacci

sequence tend to conform to Benford’s law.
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Inevitably, the increasing use of digital
analysis will lead to greater awareness of
its power by fraudsters. But according to
Nigrini, that knowledge won’t do them
much good—apart from warning them off:
“The problem for fraudsters is that they
have no idea what the whole picture looks
like until all the data are in,” says Nigrini.
“Frauds usually involve just a part of a
data set, but the fraudsters don’t know
how that set will be analysed: by quarter,
say, or department, or by region. Ensuring
the fraud always complies with Benford’s
Law is going to be tough—and most fraud-
sters aren’t rocket scientists.”

In any case, says Nigrini, there is more
to Benford’s law than tracking down fraud-
sters. Take the data explosion that threat-
ens to overwhelm computer data storage
technology. Mathematician Peter Schatte at
the Bergakademie Technical University,
Freiberg, has come up with rules that
optimise computer data storage, by allo-
cating disk space according to the propor-
tions dictated by Benford’s law.

Ted Hill at Georgia Tech thinks that the
ubiquity of Benford’s law could also prove
useful to those such as Treasury forecasters
and demographers who need a simple
“reality check” for their mathematical
models. “Nigrini showed recently that the
populations of the 3000-plus counties in
the US are very close to Benford’s law,”
says Hill. “That suggests it could be a test
for models which predict future popula-
tions—if the figures predicted are not close
to Benford, then rethink the model.”

Both Nigrini and Hill stress that Benford's
law is not a panacea for fraud-busters or the
world’s data-crunching ills. Deviations from
the law’s predictions can be caused by noth-
ing more nefarious than people rounding
numbers up or down, for example. And
both accept that there is plenty of scope for
making a hash of applying it to real-life sit-
uations: “Every mathematical theorem or
statistical test can be misused—that does
not worry me,” says Hill.

But they share a sense that there are
some really clever uses of Benford’'s law
still waiting to be dreamt up. Says Hill:
“For me the law is a prime example of a
mathematical idea which is a surprise to
everyone—even the experts.”

Robert Matthews is Science Correspondent for The
Sunday Telegraph

Further reading: Digital Analysis Tests and Statistics,
written and published by Mark Nigrini, is available
from mark_nigrini@msn.com

Alex is not the real name of Nigrini's former student
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