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Fair-Division Problems!’
Theodore P. Hill (Georgia [nstitute of Technology, Atlanta)

Tt is a distinct honor and privilege for me to deliver this lecture during today’s cele-
bration of Professor Krengel's sixtieth birthday.

[n 1972 [ was an exchange student here in Géttingen for one year, and during the
summer semester happened to take a course in combinatorics taught by the new director
of the Institute of Mathematical Stochastics, Ulrich Krengel. Two aspects are still vivid in
my memory twenty-five years later. First, the enthusiasm and clarity of Krengel's lecturing
style left no doubt that this was a mathematician who was constantly questioning and
creating mathematics of a very high caliber. The second thing I remember very clearly
was a reception at the home of Ulrich and his wife Beate - [, along with other students
in our class and students and faculty from the Institute, were invited to an open house
at the Krengel's home welcoming a visiting researcher from abroad. I am quite sure that
Ulrich and Beate do not remember me being there, but I can assure you that the warmth
and hospitality I found at the Krengel's home that evening will never be forgotten by this
particular anonymous foreign student with the dreadful American accent!

Six years later, after I had returned to the United States and finished my PhD, I
happened to read an announcement of a new inequality discovered by Krengel and Suche-
ston which was simply remarkable in its elegance and its intuitive probabilistic content.
This discovery, a so-called “prophet inequality,” made instant news among probability re-
searchers, and came to inspire much of my own research, as well as scores of publications
and numerous PhD theses in the international mathematics community. But that is a
story for another day. .

My topic for today is the subject of fair-division, which includes such problems as
dividing a cake (Ulrich's birthday cake) or piece of land fairly among several people, dis-
tributing an inheritance among several survivors, and selection of a new dean or director
in a fair way. Since this is a general audience, I will attempt to describe the main results
in somewhat informal terms.

The oldest written fair-division problem I know is an estate-division issue from the
2nd-century AD Babylonian Talmud. A man dies owing 100, 200, and 300 zuz to each of
three claimants, A, B, and C respectively. In most modern bankruptcy proceedings the
claimants receive shares of the estate proportional to their individual claims, no matter
what the size of the estate. In the talmudic problem, A would always receive one-sixth of
the total estate, B one-third, and C one-half. The solution presented in the talmud is also
this proportional one if the total estate value is 300 zuz (see Figure 1), but if the estate is
only 100 zuz, each claimant receives equal shares. And even more curiously, if the estate is
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200, then A receives 50 and B and C receive equal amounts of 75 each, even though their
claims are not equal.

Claim
A B C
100 200 300
100 100/3 100/3 100/3
Q
[ 200 50 75 75
&
300 50 100 150

Babylonian Talmund (Mishna)
2nd Century AD
Estate-Division Problem

Figure 1

The mathematical logic of the talmudic solution remained mysterious until 1984 when
Israeli mathematicians Aumann and Maschler discovered that these seemingly inconsistent
settlement methods actually anticipated the modern “nucleolus” solution of a 3-person
cooperative game. Roughly speaking, the nucleolus is that solution which minimizes the
largest dissatisfaction among all possible coalitions. For example, if the total estate is 100,
the talmudic solution rejects the modern proportional solution in favor of the equal-claim
solution for the following reason. Any coalition of the players A, B, C gets nothing for
free, since its opponent’s claims total at least the size of the whole estate. Thus with a
proportionate solution, claimant 4 will receive 100/6, B will receive 100/3 and C 100/2,
and the maximum dissatisfaction is with claimant A, who receives less (in comparison to
possible coalition claims) than he would with the equal-share solution.

If the total estate is 200, on the other hand, a coalition of B and C against A can
expect 100 zuz “for free,” since their opponent A claims only 100 of the estate. Thus a
(B, C) coalition can expect to share this excess 100 in addition to whatever it can gain as a
team against A competing for the first 100. Because of this excess, B and C can each expect
to receive more than A, so the equal-share solution does not minimize dissatisfaction. In
this type of problem where all objects in the estate (zuz, or dollars) are valued equally by
all players, many other reasonable game-theoretic solutions also exist, and no particular
one seems especially compelling,.

Another ancient historical problem is that of selecting a new king or leader in a “fair”
way. This practical problem is still evident in today’s society - for example in the selection
of Ulrich's successor to his recent position as Dean of Mathematics here in Géttingen -
and many different election methods are in use today. Most of these elections result in
dissatisfaction by at least part of the voters, and thus it came as a surprise when Professor



Lester Dubins at Berkeley discovered an elegant and practical selection method which
guarantees that each voter is satisfied with the outcome. In his solution for the problem
of selecting a director or chairperson (see Figure 2), each voter simultaneously submits a
sealed bid assigning to each candidate a number reflecting the change in salary the voter
agrees to accept if that candidate is selected . director. To preclude a voter from assigning
himself large salary increases no matter who is selected, these numbers must balance and

sum to zero for each voter.

Candidates
A B C D E
1 1 0 -2 1 0
2 -1 +1 -3 0 +3
E 3 0 -1 +1 0 0
5 4 +1 +1 -5 +2 +1
>
5 0 0 0 0 0
[ +1 -3 -1 +2 +1
+2 -2 -10 +5 +5

Dubins' Selection Matrix
Figure 2

In Figure 2, for example, voter 1 does not particularly like Candidate A, and wants
$1000 extra to work under him. He is indifferent to Candidate B, and will take a $2000 pay
cut if C is chosen director (because his friend C will give him a better office or paid trip to
Paris), and so forth. Voter 5 is indifferent to all candidates. The rules of the game are that
these salary differentials are binding, and since each voter voluntarily sets his own bid,
none can later claim he has been shortchanged. Now here is where Dubins' insight comes
in. Since each row in the bid-matrix sums to 0, the whole matrix sums to zero. Find the
column whose sum is most negative, make that candidate director, and collect/disburse
salary commitments as indicated. In Figure 2, C' would be made director, voter 1 would
pay $2000, voter 3 would receive $1000, etc. Not only does each voter receive the salary
he himself suggested, but there is even a surplus amounting to that column sum ($10K in
Figure 2), which can be distributed among the voters to give every one a salary strictly
. higher than he agreed upon!

An even older and more basic fair-division problem than the estate-division and leader-
selection problems is the prehistoric question of how to divide an object such as a cake
(Figure 3) among several people. To divide an (inhomogeneous, irregular) object between



two people, the time-honored “one cuts, the other chooses” solution guarantees each person
a portion he feels is a fair share, even though the participants may have different values.

Figure 3

Two crucial assumptions are necessary to guarantee the success of the cut-and-choose
method. First, the object must be continuously divisible by the cutter, or at the very least
he must be able to divide it into what he considers equal shares. And second, the values of
each player must be additive: if a player values a certain piece at 40%, then he must value
the remainder at 60% of the total value. In many real-life problems one or both of these
assumnptions may fail. In financial transactions, divisions of a penny are not permitted, so
the problem is not continuously divisible; and most people would agree that two halves of a
Stradivarius violin are worth far less than the whole. (In more formal mathematical terms,
the value-functions are simply probability measures — countably additive nonnegative set
functions with total mass 1; and a continuously-divisible value corresponds to an atomless
probability.)

The problem of fairly dividing an object among more than two people even when
the object is completely divisible and the values additive, remained unresolved until the
1940’s when the Polish mathematician Hugo Steinhaus made two important discoveries
which have inspired much of the modern research on fair-division. First, he proved in his
famous Ham Sandwich Theorem that any three 3-dimensional objects (say ham, cheese,
and bread) may be simultaneously bisected by a single plane. The objects need not be
connected, regular in shape or in any special orientation; more generally, any n objects in
n-dimensional space may be simultaneously bisected by a single hyperplane.

In two dimensions, for example, this theorem says that if salt and pepper are sprinkled
randomly on a table, there is always a single straight line which will simultaneously separate
the salt into two equal parts and the pepper into two equal parts. On the other hand, there
is not always a line which will simultaneously bisect salt, pepper and sugar or tabletop
(e.g., when the salt is all sprinkled tightly around one vertex of a triangle, the pepper
around a second vertex, and the sugar around the third); that the number of objects
not exceed the spacial dimension is crucial. So although Steinhaus’ theorem says that a



sandwich may be sliced with a straight (planar) sweep of a knife (Figure 4) so that it
simultaneously bisects the bread, meat and cheese, there is no guarantee that any planar
bisection also contains equal amounts of other ingredients such as lettuce or tomato.
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Figure 4

Repeated application of Steinhaus’ Ham Sandwich Theorem can give equal division
(of n objects in n space) to 4, 8 and in general 2¥ parts, but does not work for 3 people.
An even more serious practical drawback of the theorem is that it is not constructive —
that is, even though it guarantees the existence of a bisection (e.g., of salt and pepper), it
does not give a clue as to how to find this bisection.

On the other hand a constructive proof argues existence by giving an algorithm or
procedure for finding the object in question, and this is exactly what Steinhaus’ second
major contribution did. It proves the existence of fair-divisions by giving a practical and
general procedure for dividing an inhomogeneous irregular object such as a fruit cake
among an arbitrary number of people so that each receives a portion he considers a fair
share (each of n people will receive a piece he values at least one-nth of the cake), even
though different individuals may have different values — one preferring the frosting, another
the nuts, and so forth. '

Steinhaus’ cake-division algorithm works as follows. Suppose that a cake must be
divided among seven people. A long knife is passed slowly over the cake, say from left
to right, while each participant watches the value to the left of the knife as it increases
continuously (Figure 3). As soon as one participant feels this piece is worth one-seventh
in his opinion, he says “stop,” the cake is cut at that spot, and the declarer receives
that piece. Since the other six did not say “stop,” they believe the cut piece was worth
less than one-seventh, hence the remaining portion worth more than six-sevenths, by the
additivity assumption. Then the same procedure is followed for the rest of the cake and
the remaining six people, and so on. At the conclusion, each person has received a piece
he feels is worth at least one-seventh, even through the values of various parts of the cake
may vary considerably among the participants.



Although this method guarantees that each participant will receive a portion of the
cake he feels is a fair share (at least one-nth the total value, by his own measure), it does
not guarantee that he would not prefer a piece which was given to someone else. For
example, the final remaining piece may often turn out to be more valuable to the person
who first said stop than the piece (first piece cut) that he received. The question of finding
an algorithm which would give each person his first choice among all the pieces was first
solved independently by Stromquist and by Woodall for n = 3 in 1980. Figure 5 illustrates
Stromquist’s sliding-knives solution to “envy-free” partition of a cake among three people.
The M knife is moved slowly to the right by a judge, and each of the three participants
moves his own knife to the right and parallel to the M knife, so that at each instant his
knife indicates what he considers a bisection of the portion to the right of the M-knife.
The piece to the left of M grows continuously until one player says “stop,” at which time
the cake is cut by M and by the middle of the other three knives. If action was stopped
in the position shown, and A declared “stop,” then A gets the portion left of M, B gets
the middle piece and C the right-hand piece. If B declared “stop,” then B gets left of M,
A gets center piece, and C gets right-hand piece again. (Ties are broken arbitrarily.) The
reader-is invited to check that this method does always yield an envy-free division, in that
no player prefers to have one of the other players' pieces. Recent envy-free algorithms for
4 or more people have been discovered by Brams and Taylor, but are impractical and far
more complicated.
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Figure 5

(Notice that the sliding-knife solutions just described assume that none of the par-
ticipants are bluffing.about his values. If bluffing is allowed, then an element of risk is
introduced into the problem. A player who bluffs by letting the knife continue past what
he considers a fair share, in the hopes of claiming a larger-than-fair share, is also risking
receiving a smaller-than-fair share if another player says “stop” too soon. All the risk-free
fair-division methods being discussed here, which guarantee certain sizes of shares, also
have game-theoretic versions which incorporate various elements of risk due to random
play and bluffing.) '

In the 1980's, Professor Robion Kirby at Berkeley proposed an elegant and practical
application of these fair-division algorithms to the problem of disarmament. Suppose
Countries A and B agree to 50% arms reduction; Kirby’s method works as follows. Country



A openly declares the relative values of each of its arms, and then Country B selects
that 50% of A's declared values which it wants destroyed (Figure 6). Simultaneously, B
declares the values of its own arms, and A picks the 50% it wants destroyed. This method
guarantees that each country will be satisfied that it has destroyed more than half the
other’s armaments (except in the rare case both countries value every weapon exactly the
same), and if both countries declare their true values, each is also guaranteed he will only
destroy half his own armaments. If either country lies or bluffs, he risks losing more.

KIRBY'S DISARMAMENT ALGORITHM

Country A's relative A's declared B’s relative B demands A's value B's value
A's arms value value value A destroy of desroyed of destroyed
120 tanks 40% 40% 20% 100 fighters  50% 66.7%
120 fighters  60% 60% 80% e Gl
Country A'srelative  A's declared B's relative B demands A's value B's value
A’s arms value value value A destroy of destroyed of desooyed
120 tanks 40% 50% 20% 120 fighters ~ 60% 80% . .
120 fighters 60% 50% 30%
Country A's relative A's declared B’'s relative B demands A's value B's value
A's arms value value value A destroy of destroyed of destroyed
120 tanks 40% 50% 80% 120 tanks 40% 80%
120 fighters 60% 50% 20%
Country A's relative A's declared B's relative B demands A's value B's value
A's arms value value value & destroy of destroyed of desooved
120 tanks 40% 40% 45% T ? ?
120 fighters a0% 60% 55%

Figure 6

Figure 6 shows a typical example of how the destruction of A's weapons proceeds.

In this case A's weapons consist of 120 tanks and 120 fighters, of which A values each
fighter half again as much as each tank. A must declare to B the relative value of those
weapons, and from these declared values, B may choose the 50% to be destroyed. In the
top scenario, B values fighters more than 4 does, and thus chooses to have as many as
those (up to 50% total declared value) destroyed, with the result that A believes it has lost
50%, but B feels he has destroyed two-thirds of A's weapons. If A declares his true values,
he will always lose exactly 50%, but if A4 lies or bluffs about his values (middle cases), he
may lose more or less than 50% depending on B's values. B, on the other hand, will be
assured he has destroyed at least 50% of A's arms whether or not 4 lies. The reader is
invited to determine what B should ask A to destroy in the bottom case, and how A and
B value the destroyed arms. This method of Kirby not only guarantees each side what
it considers a fair reduction, but does so without the need for long negotiations over the
values of each type of weapon.

The fair division of land introduces topological complications not inherent in cake-
division, since pieces of cake may be repositioned arbitrarily, and location is not an issue.
But with division of land, a typical requirement is that each participant receive a portion



that is adjacent to his own homeland, rather than an inaccessible island in the midst
of enemy territory. Here the sliding-knife solution may fail (Figure 7), as will the other
standard fair-division algorithms. The D region represents a territory surrounded by three
countries who have equal claim to it. The values of the three countries may differ (one may
be oil-rich but water-poor, and vice versa), and the problem is to divide the D territory
into three single pieces, giving each of the surrounding countries a piece which is adjacent
to its own land, and which it considers at least one-third of the total value. The sliding-
knife solution for cake-cutting fails in general, for suppose B says “stop” at the position
indicated. If B is not given that piece, then he must share the remainder (which he
considers worth less than 2/3) with one of the other countries, and thus is not guaranteed
to get a piece he feels is worth at least a third. If B receives only that piece, he has no
access to it, and if B is given that piece plus a small connecting strip to its own territory,
then one of the other countries will be shortchanged and possibly even completely cut off
from his own desired piece. Using a convexity theorem for measures, it was shown there
is always a land-division solution in which each country receives a fair share consisting of
a single piece of land adjacent to its own territory. That solution was not a practical one,
however, since it is nonconstructive in the same way that the Ham Sandwich Theorem
is, but several years later Professor Anatole Beck of Madison discovered an ingenious and
complicated constructive algorithm for dividing land fairly. -

Figure 7
Proved by Russian mathematician A. Lyapounov in 1940, the convexity theorem for
vector measures says that the range of every finite-dimensional, atomless vector measure
1s convex. For example, if the proportions of the various ingredients (salt, sugar, fat,
Hour, etc.) of a cake are plotted for every conceivable piece of the cake, then the resulting
region will always be convex, that is, will be a shape without dents or holes (Figure 8).



The power of this celebrated theorem has been applied to solve many faimous problems in
mathematics, among them the bang-bang principle of optimal control theory and another
fair-division problem, R. A. Fisher’s 1930’s Problem of the Nile.

A

fat

S

sugar

Figure 8

The Problem of the Nile concerns the fair division of land along the banks of a river
which is subject to periodic flooding. Since the value of any given tract of land each year
depends heavily on the most recent flood height (some heights bring a new layer of topsoil,
others deplete it), the question was whether there is always a way to give each family a
fixed plot of land so.that every plot gains or loses exactly the same value no matter what
the height of the flood. That is, can each family be given deed to a single piece of land so
that if the flood height one year results in a decrease of 10% in the value of one family’s
plot, then every family’s plot decreases 10% in value that year, and if the flood height was
such that one family’s plot increases in value 20%, then every family's plot increases in
value 20%? I[n cake-cutting terms, this asks whether a cake may be cut into n pieces in
such a way that each piece contains exactly the same amount of calories, of fat, of sugar,
and so on. Professor Jerzy Neyman showed in 1949 that Lyapounov’s theorem implies
that such divisions do always exist, although again the solution is nonconstructive, and no
practical solution analogous to the sliding-knife method has yet been found.

Although many generalizations and extensions of the convexity theorem have been
discovered, there still remain a number of basic unsolved questions. One such is to find a



constructive or algorithmic proof of the theorem (which would automatically yield a con-
structive general envy-free algorithm). Another is to characterize those sets in Euclidean
n-space which are the ranges of atomless vector measures. The answer is known in the
plane: a set is the range of a finite atomless 2-dimensional vector measure if and only if
it is convex, compact, centrally symimetric, contained in the first (positive) quadrant, and
contains the origin. Thus of the sets in Figure 9, the line is a possible range (run the
cake through a food blender, and each piece will have exactly the same proportion of each
ingredient), as is the square (for a cake where the fat and sugar are completely separated).
The triangle and pentagon are not possible since they are not centrally symmetric, and the
hexagon is not a possible range even though it is convex, compact and centrally symmetric,
since it cannot both contain the origin and lie in the first quadrant. These five conditions
are known to be necessary but not sufficient for higher dimensions.

Figure 9

Super-fair divisions, in which each player receives a share he feels is worth strictly more
than a fair share, are in fact possible in every problem in which there is at least one piece
of cake not valued equally by everyone. This is especially easy to believe in the case of two
people, since different values implies that there is some piece that one person values more
than the second person, and, by additivity, there is also a piece the second person values
more highly than the first does. Giving each person the piece he prefers is a start toward a
superfair partition. For three or more people the existence of superfair divisions is not at
all obvious, but as yet another consequence of Lyapounov convexity, Polish mathematician
K. Urbanik and independently Dubins and Spanier in Berkeley proved that if any two of
the participants’ values differ on even the tiniest of pieces, then there is always a super-fair
partition. In the case of three people, this means each may be given a piece he feels is
worth more than one-third the whole cake. -

[t is possible to quantify exactly how much more than a fair share is possible as
function of the “cooperative value” M of the cake. If n people are to divide a cake and

every piece is given to the person who values it most, M is the sum of each person's
resulting perceived share (informally, if each player pays into a common account his value




of the piece he receives, M is the balance in the account). It is now known that there is
always a solution in which each person receives at least 1/(n — M + 1) of the total value.
Since M is strictly larger than 1 (except when all the values for all players are identical),
this new guarantee is strictly larger than the fair share 1/n. For example, if three people
are to share a cake whose cooperative value M they place at 3/2, then a partition is possible
guaranteeing each of the three people a piece he values at least 1/(3 — 32+ 1) = 40% of
the total cake, and in general this is the best that can be expected under those conditions.

All the fair-divisions described above depended heavily on the complete divisibility of
the object to be partitioned, whereas in many real-life problems the object may consist of
indivisible pieces. Even a real cake has basic indivisible components (crumbs perhaps, or
molecules), so officially speaking even the sliding-knife does not perform perfectly. More
seriously, many estate settlements consist entirely of indivisible objects such as pianos or
pieces of silverware, and sliding-knife solutions are not practical. In these fair-division
problems where the value measures may have indivisible “atoms,” the exact minimal guar-
antees as a function of atom size are now known. For example, if three people are to
divide a cake, and each agrees that no crumb is worth more than one-thousandth of the
whole cake, then there is always a partitioning so that each person receives a piece he
values at least 83/250, which is just slightly less than the guaranteed 1/3 share possible
if the sliding-knife could also split crumbs and molecules. However, since the last crumb
may not be further divided but must instead be given in its entirety to one of the players,
this means some player may receive strictly less than a fair share. The significance of the
number 83/250 is that this is the new universally guaranteed share, in place of 1/3, in
every division involving 3 people and atoms of size one-thousandth. Optimal share-values
have been found for all n and all atom sizes, and although the function describing these is
somewhat complicated with unexpected sharp points and a fractal-like (self-similar) shape,
it is explicit and easy to evaluate (Figure 10).

minimum share

1/2 1
maximum “crumb” size

Figure 10
[ would like to end this lecture on that note of practicality - the fair division of
real objects, which we are about to practice once again compliments of the wonderful
hospitality of Ulrich and Beate. Please join me in congratulating our friend and colleague
Ulrich Krengel on his sixtieth birthday.
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Theodore P. Hill betrachtet das Tortenproblem. (Foto: Gnedin)
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